首页> 外文OA文献 >Numerical treatment of the Boltzmann equation for self-propelled particle systems
【2h】

Numerical treatment of the Boltzmann equation for self-propelled particle systems

机译:自行火炮Boltzmann方程的数值处理   粒子系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Kinetic theories constitute one of the most promising tools to decipher thecharacteristic spatio-temporal dynamics in systems of actively propelledparticles. In this context, the Boltzmann equation plays a pivotal role, sinceit provides a natural translation between a particle-level description of thesystem's dynamics and the corresponding hydrodynamic fields. Yet, the intricatemathematical structure of the Boltzmann equation substantially limits theprogress toward a full understanding of this equation by solely analyticalmeans. Here, we propose a general framework to numerically solve the Boltzmannequation for self-propelled particle systems in two spatial dimensions and witharbitrary boundary conditions. We discuss potential applications of thisnumerical framework to active matter systems, and use the algorithm to give adetailed analysis to a model system of self-propelled particles with polarinteractions. In accordance with previous studies, we find that spatiallyhomogeneous isotropic and broken symmetry states populate two distinct regionsin parameter space, which are separated by a narrow region of spatiallyinhomogeneous, density-segregated moving patterns. We find clear evidence thatthese three regions in parameter space are connected by first order phasetransitions, and that the transition between the spatially homogeneousisotropic and polar ordered phases bears striking similarities to liquid-gasphase transitions in equilibrium systems. Within the density segregatedparameter regime, we find a novel stable limit-cycle solution of the Boltzmannequation, which consists of parallel lanes of polar clusters moving in oppositedirections, so as to render the overall symmetry of the system's ordered statenematic, despite purely polar interactions on the level of single particles.
机译:动力学理论是破译主动推进粒子系统中的时空动力学特征的最有前途的工具之一。在这种情况下,玻尔兹曼方程起着举足轻重的作用,因为它在系统动力学的粒子级描述和相应的流体动力学场之间提供了自然的转换。然而,玻尔兹曼方程的复杂数学结构极大地限制了仅通过分析手段就可以完全理解该方程的过程。在这里,我们提出了一个通用框架,用于在二维空间和任意边界条件下,数值求解自推进粒子系统的玻尔兹曼方程。我们讨论了该数值框架在活性物质系统中的潜在应用,并使用该算法对具有极性相互作用的自推进粒子的模型系统进行了详细分析。根据先前的研究,我们发现空间均匀的各向同性状态和破碎的对称状态填充了参数空间中的两个不同区域,这些区域被空间上不均匀,密度分离的运动模式的狭窄区域所分隔。我们发现明显的证据表明,参数空间中的这三个区域通过一阶相变连接,并且空间均匀各向同性相和极性有序相之间的跃迁与平衡系统中的液相-气相跃迁具有惊人的相似性。在密度隔离参数范围内,我们发现了一个新颖的玻尔兹曼方程的稳定极限环解,该解由极性簇的相反方向的平行泳道组成,尽管系统上存在纯极性相互作用,但仍呈现出系统有序状态的整体对称性。单颗粒的水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号